The Schur multiplier of an <i>n</i>-Lie superalgebra

نویسندگان

چکیده

In the present paper, we study notion of Schur multiplier M(L) an n-Lie superalgebra L=L0?L1 and prove that dim M(L)??i=0n(mi)L(n?i,k), where L0=m, L1=k, L(0,k)=1 L(t,k)=?j=1t(t?1j?1)(kj), for 1?t?n. Moreover, obtain upper bound dimension in which L is a nilpotent with one-dimensional derived superalgebra. It also provided several inequalities on as well analogue converse Schur’s theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

second cohomology of lie rings and the schur multiplier

‎‎we exhibit an explicit construction for the second cohomology group‎ ‎$h^2(l‎, ‎a)$ for a lie ring $l$ and a trivial $l$-module $a$‎. ‎we show how the elements of $h^2(l‎, ‎a)$ correspond one-to-one to the‎ ‎equivalence classes of central extensions of $l$ by $a$‎, ‎where $a$‎ ‎now is considered as an abelian lie ring‎. ‎for a finite lie‎ ‎ring $l$ we also show that $h^2(l‎, ‎c^*) cong m(l)$‎...

متن کامل

A restriction on the Schur multiplier of nilpotent Lie algebras

An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maxim...

متن کامل

THE Q-q-SCHUR SUPERALGEBRA

As a natural generalisation of q-Schur algebras associated with the Hecke algebra Hr,R (of the symmetric group), we introduce the Q-q-Schur superalgebra associated with the Hecke-Clifford superalgebra H r,R, which, by definition, is the endomorphism algebra of the induced H r,R-module from certain q-permutation modules over Hr,R. We will describe certain integral bases for these superalgebras i...

متن کامل

Yangian of the Queer Lie Superalgebra

Consider the complex matrix Lie superalgebra glN|N with the standard generators Eij where i, j = ±1 , . . . ,±N . Define an involutory automorphism η of glN|N by η (Eij) = E−i,−j . The twisted polynomial current Lie superalgebra g = {X(u) ∈ glN|N [u] : η (X(u)) = X(−u) } has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra U(g) as a co-Poisson Hopf superalge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2022

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.2023889